DIALKI: Knowledge Identification in Conversational Systems through
Dialogue-Document Contextualization

Zeqiu (Ellen) Wu'® Bo-Ru (Roy) Lu® Hannaneh Hajishirzi®*v Mari Ostendorf®

#University of Washington CAllen Institute for Al

Background

= |dentifying relevant knowledge to be used in document-grounded conversational systems is
critical to effective response generation.

= Knowledge Identification (KI) is the task of locating knowledge in a long document that is
relevant to the current user query given the conversation context.
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Challenges & Solutions

= Challenge 1 The grounding document can be long.

= Solution A multi-passage knowledge reader that selects the most relevant passage from
which the final answer string is selected.

= Challenge 2 Relevance of information depends on: (1) What has been asked. (2) What has
been already communicated. (3) Who said what.

= Solution Dialogue-contextualized passage representations and a multitask learning framework
with objectives to identify knowledge for the next turn, as well as used knowledge for
previous turns.

Datasets

Method Overview

Ablations on Dev Sets

= Doc2Dial [3]
= 4.8k goal-oriented dialogues in 4 social-welfare domains.
= The blind held-out test set has an additional Covid-19 domain.
= Each turn is grounded in a sequence of knowledge spans in a given document.

= Wizard of Wikipedia (WoW) [2]
= QOver 20k social chat conversations.

= Dev/Test set has two subsets with conversation topics seen or unseen in training.
= Each turn is grounded in one or no sentence from / Wikipedia passages.

Encoding Dialogue Context and Knowledge Multi-Task Learning
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Knowledge Contextualization

The contextualized span representation §; = [sj,§j,’§j] combines the original span vector s; with

= Gated pooling with user turns's;.
= Gated pooling with agent turns s;.

Next-Turn Knowledge Identification (£,c.:)

Applies linear layers on z and s; to predict the gold passage, begin and end spans.

History Knowledge Identification (£} )

Leverages u; and s; to predict the gold passage, begin and end spans for each history turn.

Posterior Regularization (£, )

Incorporates a f-divergence based posterior regularization mechanism [1] during training.

Joint objective with tunable parameters

L = Lpext + aLyist + LLagy

Evaluation Results on test sets
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Figure 2. Exact Match (EM) scores on test sets. We observe similar trends in F1.

= Seen / unseen data during training:

= Doc2Dial: seen / unseen grounding documents.
= WoW: seen / unseen conversations with topics.

= Overall, adding each component of our model proves to be effective.

Impact of Kl on Response Generation

Kl Model Knowledge Input sacrebleu
— full doc 22.84
BERTQA-Token pred span 21.42
DIALKI pred span 25.16
DIALKI pred span & passage  25.84

Table 1. Response generation results on Doc2Dial dev set. Kl stands for Knowledge |dentification.

= Using knowledge predicted by DIALKI leads to improvements in the sacrebleu score.
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Figure 1. Exact Match (EM) scores on test sets. We observe similar trends in F1.

In Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP) 2021

= Addresses knowledge identification in conversational systems with long grounding documents
using:
= passage representations contextualized with the dialogue-document history.
= multi-task learning and posterior regularization.

= Achieves state-of-the-art results on two dialogue datasets.
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